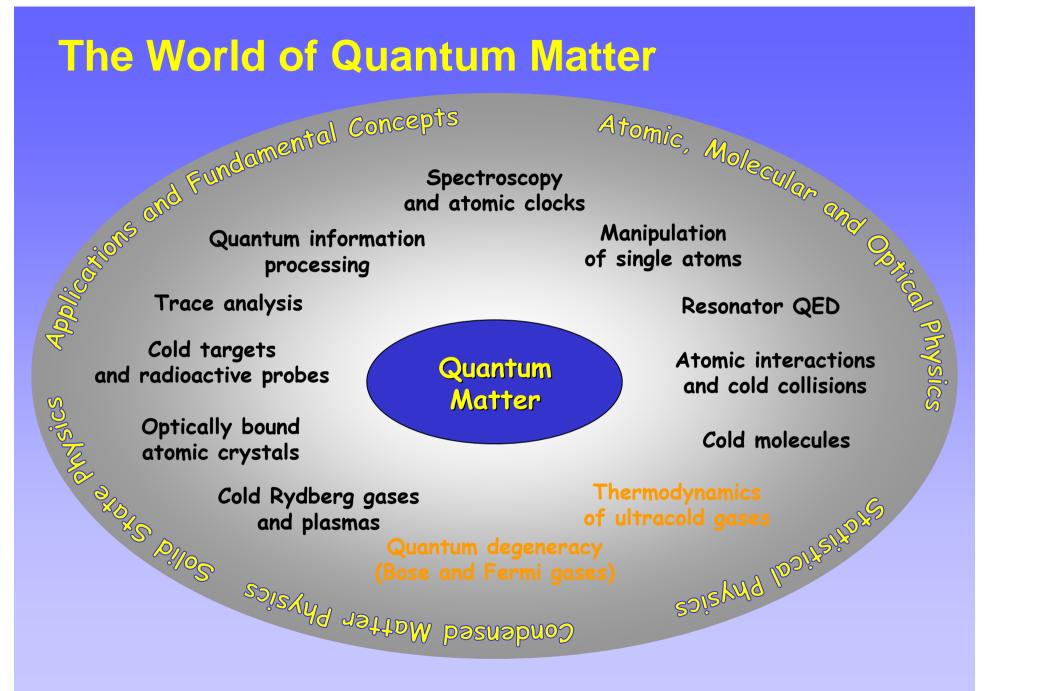
The World of Quantum Matter

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Atomic and Molecular Quantum Dynamics

Matthias Weidemüller Albert-Ludwigs-Universität Freiburg

Atomare und Molekulare Quantendynamik



Contents of the lectures

- 0. Primer on light-matter interactions
- 1. The way to absolute zero cooling and trapping methods for atoms
- 2. Cold collisions
- 3. Bose-Einstein condensation
- 4. Degenerate Fermi gases
- 5. Cold Rydberg gases and plasmas
- 6. Ultracold molecules
- 7. Manipulation of single atoms
- 8. Cold atoms as targets for photon and particle beams

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Bosons and Fermions

Quantum particles appear in two different "flavors" (quantum statistics) depending on their total angular momentum (spin):

integer spin half-integer spin **Bosons** (e.g. photon) **Fermions** (e.g. electron, proton, neutron)

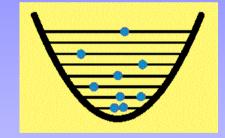
The spin determines the social quantum behaviour of these particles:

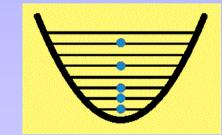
Bosons:

A quantum state can be occupied by an arbitrary number of bosons. If the state is already occupied by N bosons, the probability for the next boson to occupy the same state is N times enhanced.

Fermions:

A quantum state can never be occupied by more than one fermion.





Quantum statistics

•						•	
		•		•		•	
			•				
	• •)		•			•
•)	•			•)	
	•			•		•	
			•			•	•
	•				•		

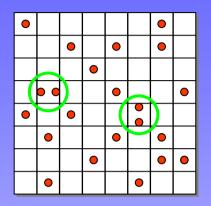
classical particles

$$p_i = \frac{1}{N}$$

occupation per state follows simple Poissonian statistics

courtesy Rudi Grimm (Universität Innsbruck)

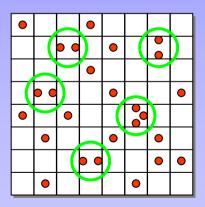
Quantum statistics



classical particles

$$p_i = \frac{1}{N}$$

occupation per state follows simple Poissonian statistics



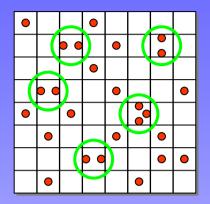
bosons

 $p_i \propto n_i + 1,$ $n_i = 0, 1, 2, ...$

bunching effect (well known Hanbury-Brown-Twiss expt.)

courtesy Rudi Grimm (Universität Innsbruck)

Quantum statistics



bosons

$$p_i \propto n_i + 1,$$
 $n_i = 0, 1, 2, ...$

bunching effect (well known Hanbury-Brown-Twiss expt.)

•			•			•	
	•	•		•			•
	•		•		•		
	•			•			•
•		•	•		•		
	•			•		•	
		•		•		•	•
	•				•		

fermions

 $p_i \propto n_i - 1, \qquad n_i = 0, 1$

Pauli's exclusion principle

courtesy Rudi Grimm (Universität Innsbruck)

Boltzmann factor

E

quantum states with different energies

$$p \propto \mathrm{e}^{-E/k_{\mathrm{B}}T}$$

•

Boltzmann factor

Boltzmann's constant $k_{\rm B} = 1.3805 \times 10^{-23} \, {\rm J/K}$

Ludwig Boltzmann

courtesy Rudi Grimm (Universität Innsbruck)

Distribution functions

Bose-Einstein statistics

$$f_{\rm BE} = \frac{1}{\mathrm{e}^{(E-\mu)/k_{\rm B}T} - 1}$$

Boltzmann factor

together with quantum statistics

$$f_{\rm cl} = \frac{1}{{\rm e}^{(E-\mu)/k_{\rm B}T}}$$

classical limit

$$f_{\rm FD} = \frac{1}{{\rm e}^{(E-\mu)/k_{\rm B}T}+1}$$

Fermi-Dirac statistics

courtesy Rudi Grimm (Universität Innsbruck)

Thermodynamics

High temperature regime ($k_B T \gg \Delta E_{q.m.}$):

Each quantum mechanical state is occupied with a probability $\ll 1$ \Rightarrow no difference between bosons and fermions (**Boltzmann statistics**)

Low temperature regime ($k_BT \lesssim \Delta E_{q.m.}$):

Each quantum mechanical state is occupied with a probability \gtrsim 1 \Rightarrow **Bose-Einstein statistics** and **Fermi-Dirac statistics**

Level spacing $\Delta E_{q.m.}$ for particles with an average spacing d: $\Delta E_{q.m.} \sim p^2$ / 2m $\sim h^2$ / 2md²

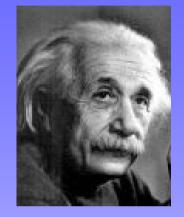
$$k_{B}T \lesssim \Delta E_{q.m.} \iff \mathbf{n} \Lambda_{dB}{}^{3} \gtrsim \mathbf{1}$$

thermal deBroglie wavelength $\Lambda_{dB} = (2\pi\hbar^2 / mk_BT)^{1/2}$

Prediction in 1925



Satyendranath Bose (1894 - 1974)



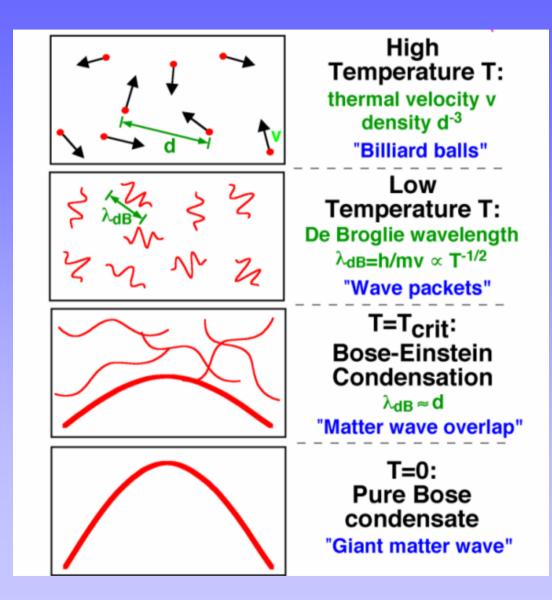
Albert Einstein (1879 - 1955)

An "ideal" gas of Bosons shows a phase transition at sufficiently low temperatures.

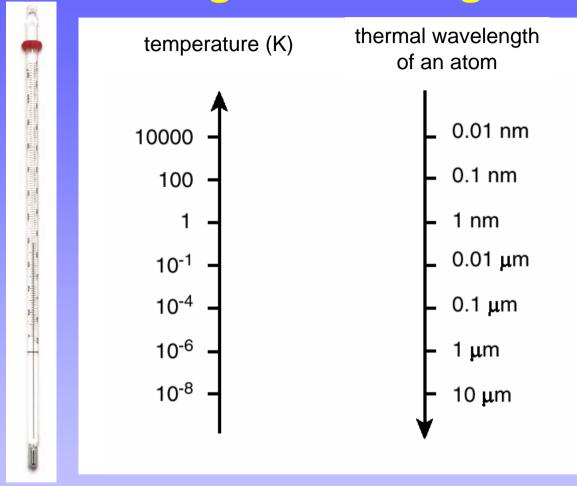
The gas condenses into the lowest available quantum state and forms a **macroscopic quantum object**:

the Bose-Einstein condensate.

Bose-Einstein condensation (BEC)



Thermal deBroglie wavelength

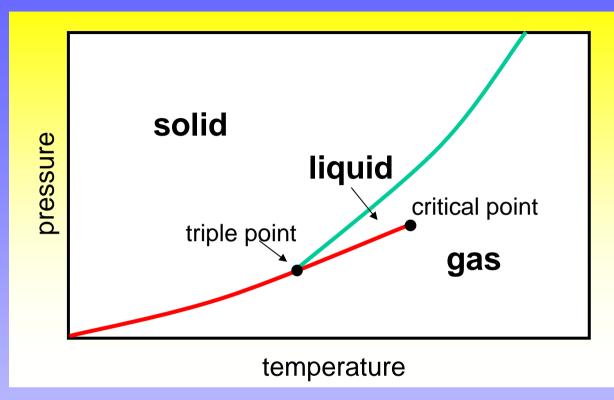


At room temperature (300 K):

Bose condensation would occur at a density larger than $(0.1 \text{ nm})^{-3} = 10^{24} \text{ atoms/cm}^3$ (typical density in a solid sample !)

Why we do not observe Bose condensation in real life ?

Phase diagram



At low temperatures, the thermal equilibrium state of every systemis the **solid phase** (even down to T = 0)

Bose-Einstein condensation of a gas can only occur as a **metastable phase** at low densities ($\sim 10^{14}$ atoms/cm³) to prevent 3-body-recombination (equivalent to a saturated vapor)

\Rightarrow ultralow temperatures required (\sim 1 μ K)

Are atoms bosons?

Atoms and molecules are composite particles, composed of fermionic elementary particles (electrons, protons, neutrons).

Total spin is integer (total number of electrons, protons and neutron is even) \Rightarrow atoms and molecules are *bosonic*

Total spin is half-integer (total number of electrons, protons and neutron is odd) ⇒ atoms and molecules are *fermionic*

Are atoms bosons?

Atoms and molecules are composite particles, composed of fermionic elementary particles (electrons, protons, neutrons).

Total spin is integer (total number of electrons, protons and neutron is even) ⇒ atoms and molecules are *bosonic*

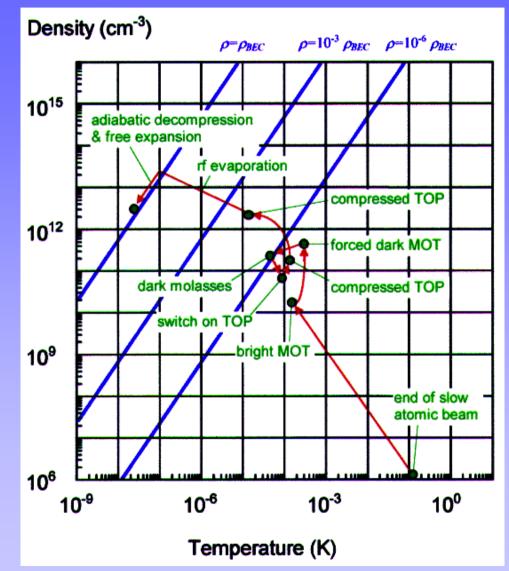
Total spin is half-integer (total number of electrons, protons and neutron is odd) ⇒ atoms and molecules are *fermionic*

Under which conditions is a composite particle a composite particle?

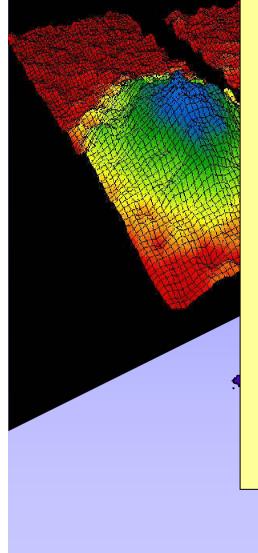
Thermal energy k_BT smaller than the internal excitation of the particle \Rightarrow internal degrees of freedom are frozen out and do not matter for the thermodynamics

Interaction energy smaller than the internal excitation energy \Rightarrow collisions do not remove or excite the bound electrons

The long, long road to BEC



BEC in Boulder, Juni 1995 (Rubidium)



Bose-Einstein condensation



Carl Wieman, Eric Cornell

Wolfgang Ketterle **Physics Nobel Prize 2001**

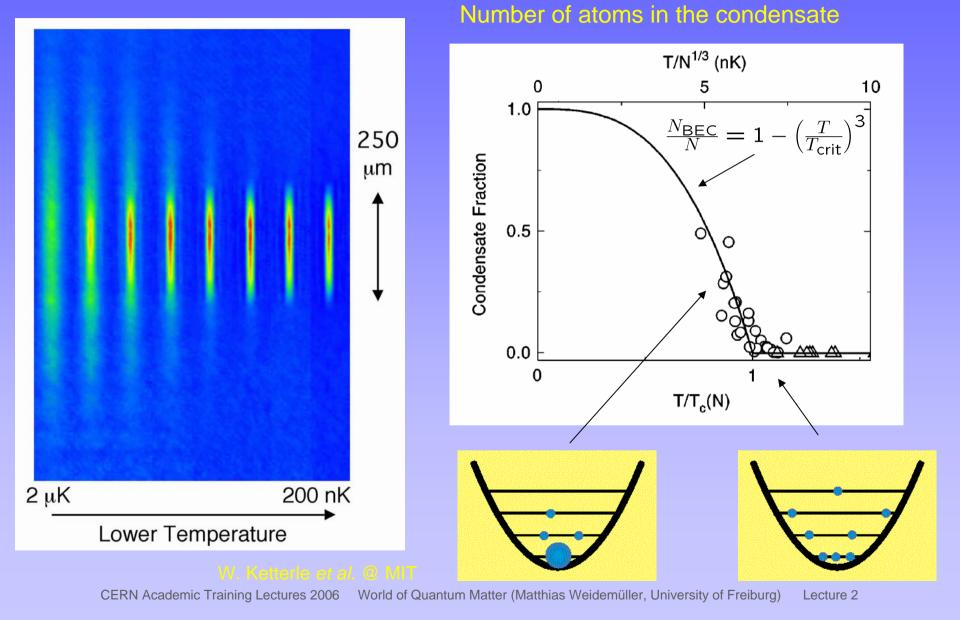
ni U.

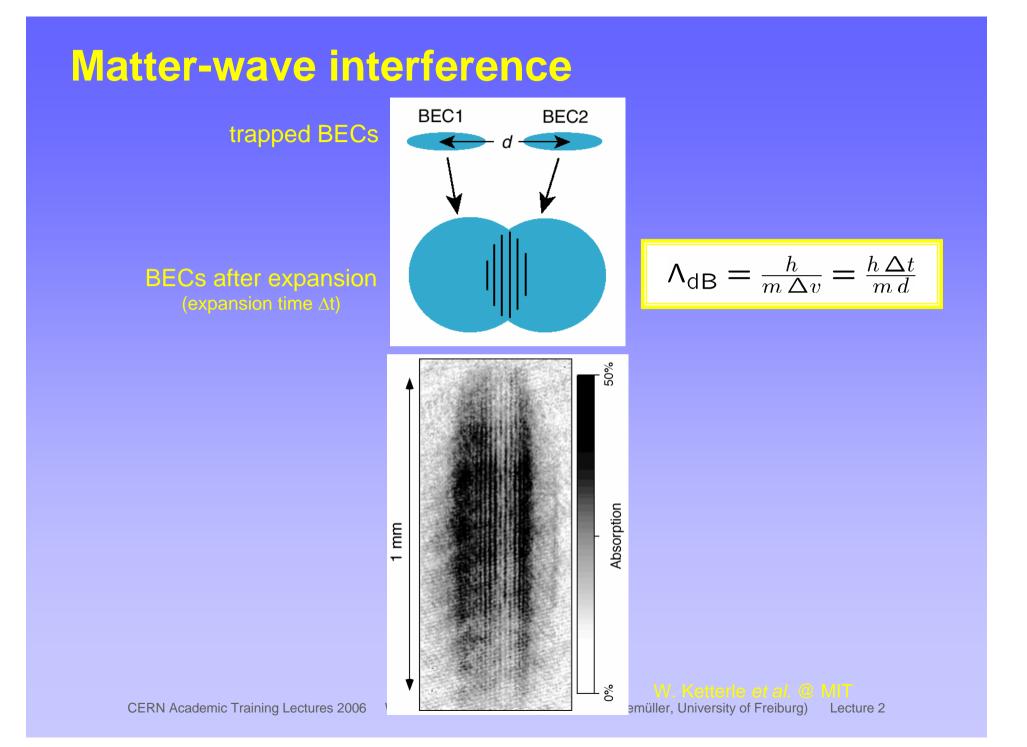
CERN Academic Training Lectures 2006 World of Qua BEC at MIT, Nov. 1995 (Natrium)

BEC - "molecule" of the year

Transition to BEC

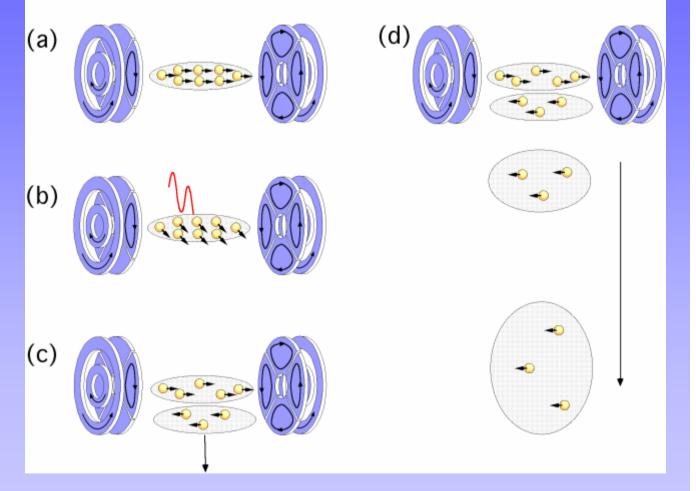
In-situ measurement



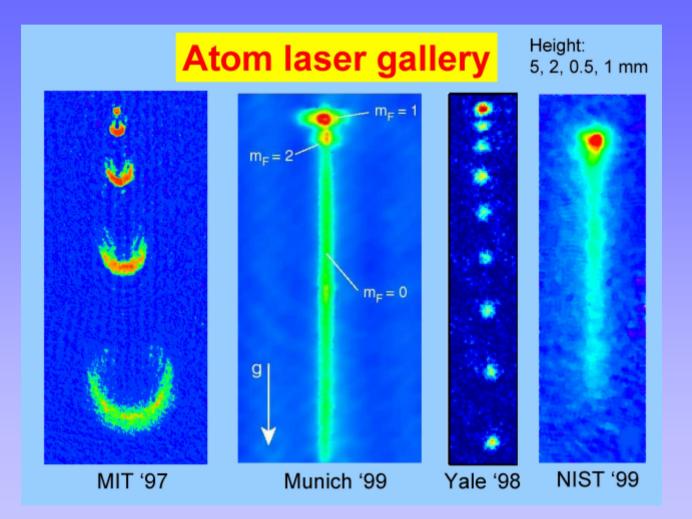


Output Coupler for a Bose condensate

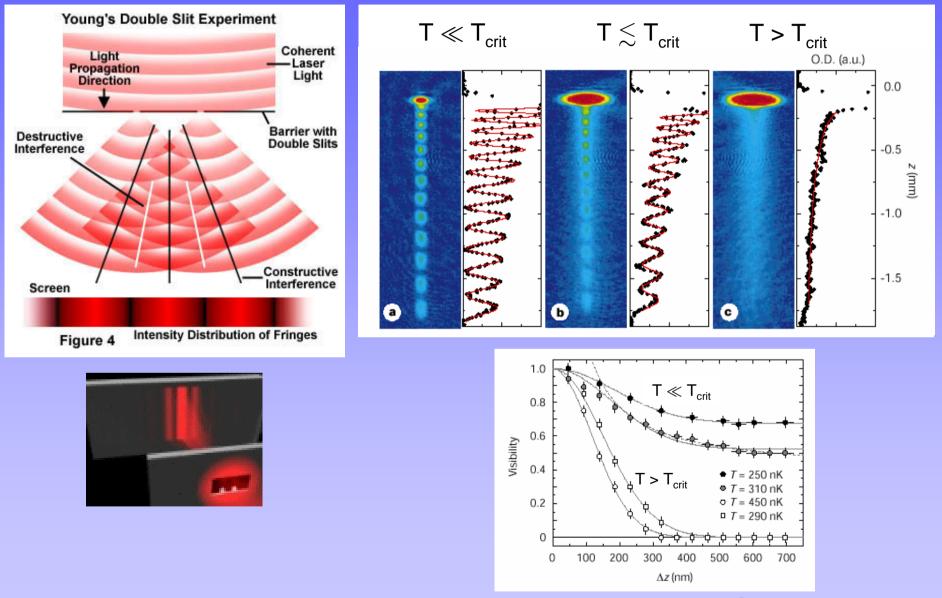
Rf output coupler for a Bose condensate



Atom Lasers

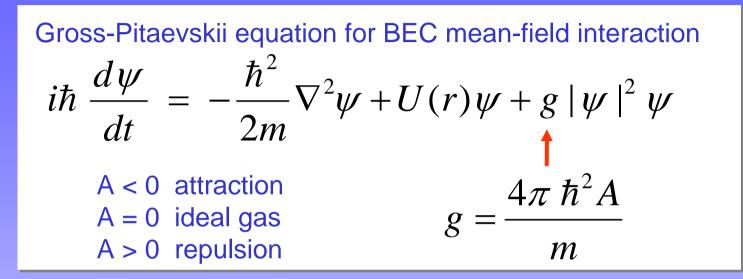


Coherence of the atom laser



CERN Academic Training Lectures 2006 World of Quantum Matter (Matthias Weid Wail Hanschset at reguly niversität München

Gross-Pitaevskii equation



ensemble creates "mean field" (prop. to number density), which gives additional "potential" in Schrödinger equation

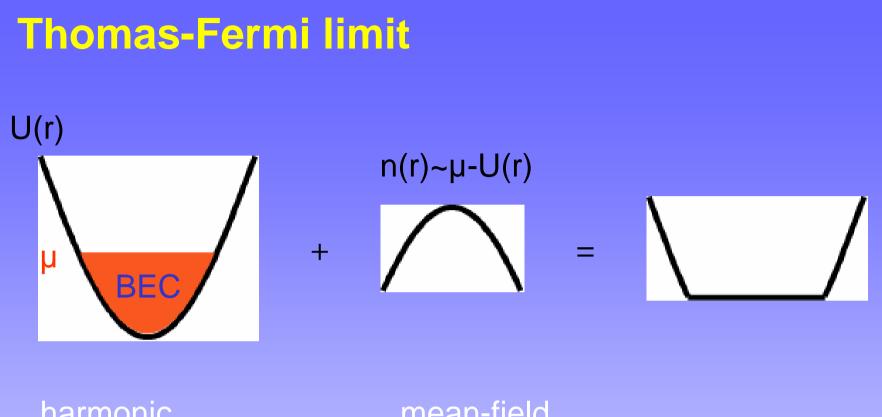
→ simple "mean-field theory" with nonlinear behavior many phenomena (expansion, sound, collective oscillations) can be understood in this way !!

Thomas-Fermi regime

Denary solution large ensemble **Gross-Pitaevskii equation for BEC mean-field interaction** $i\hbar \frac{d\psi}{dt} = -\frac{\hbar^2}{2m} \sqrt{\psi} + U(r)\psi + g |\psi|^2 \psi$ A < 0 attraction A = 0 ideal gas A > 0 repulsion $g = \frac{4\pi \hbar^2 A}{m}$

very simple solution

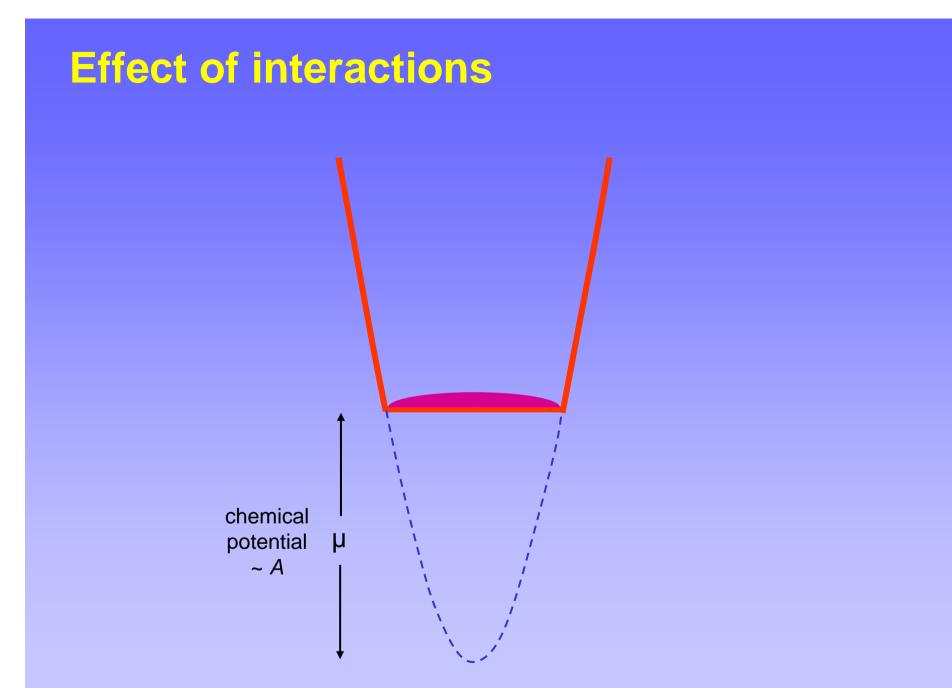
$$n(\vec{r}) \propto \mu - U(\vec{r})$$

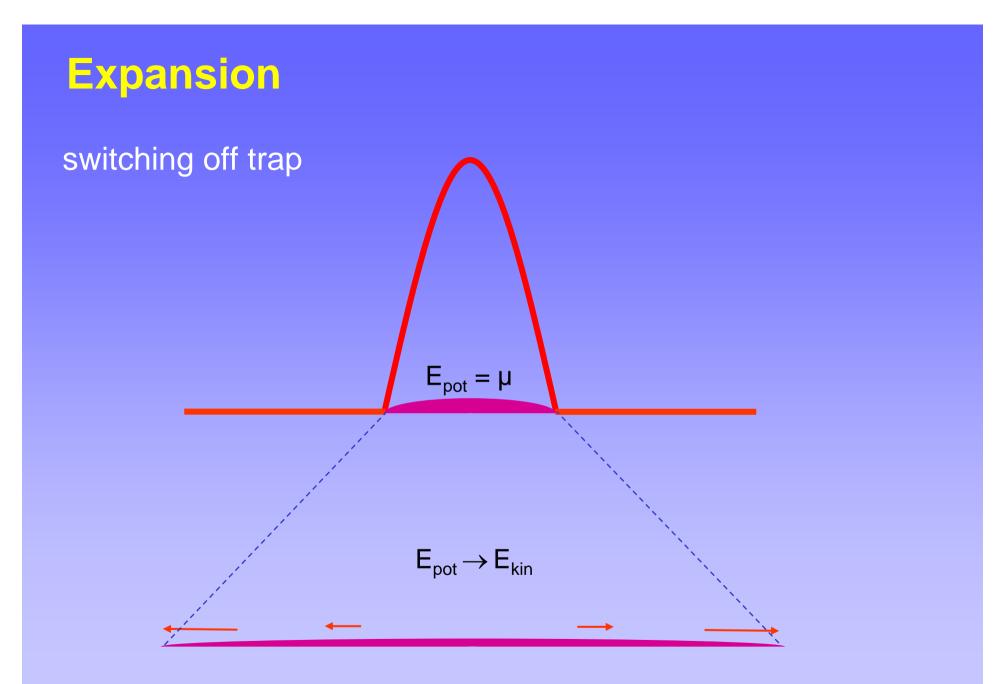


harmonic potential mean-field potential

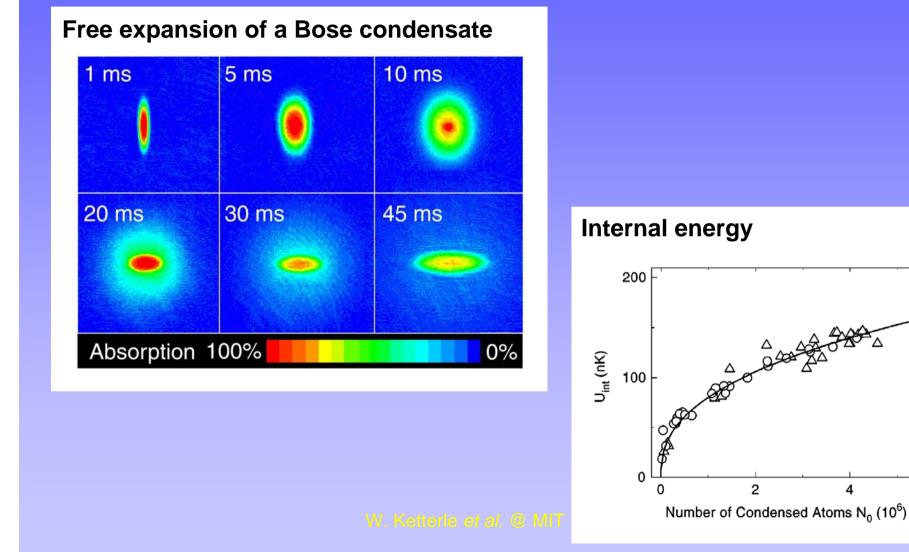
total potential

BEC density distribution is inverse shape of trap potential





Influence of interactions

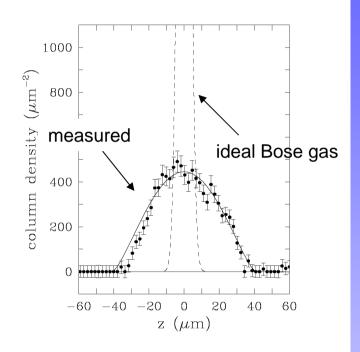


CERN Academic Training Lectures 2006 World of Quantum Matter (Matthias Weidemüller, University of Freiburg) Lecture 2

4

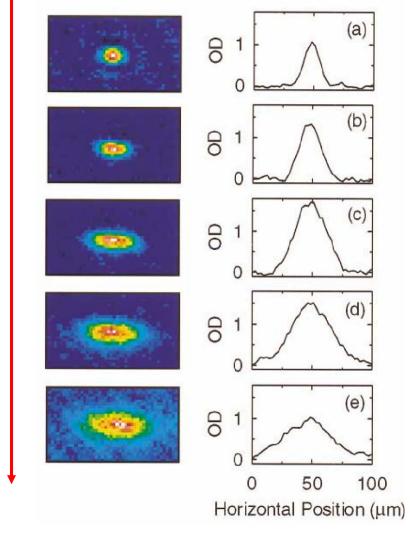
Influence of interactions (cont'd)

Density distribution



_. Hau *et al*. @ Harvard

Manipulation of the interaction strength

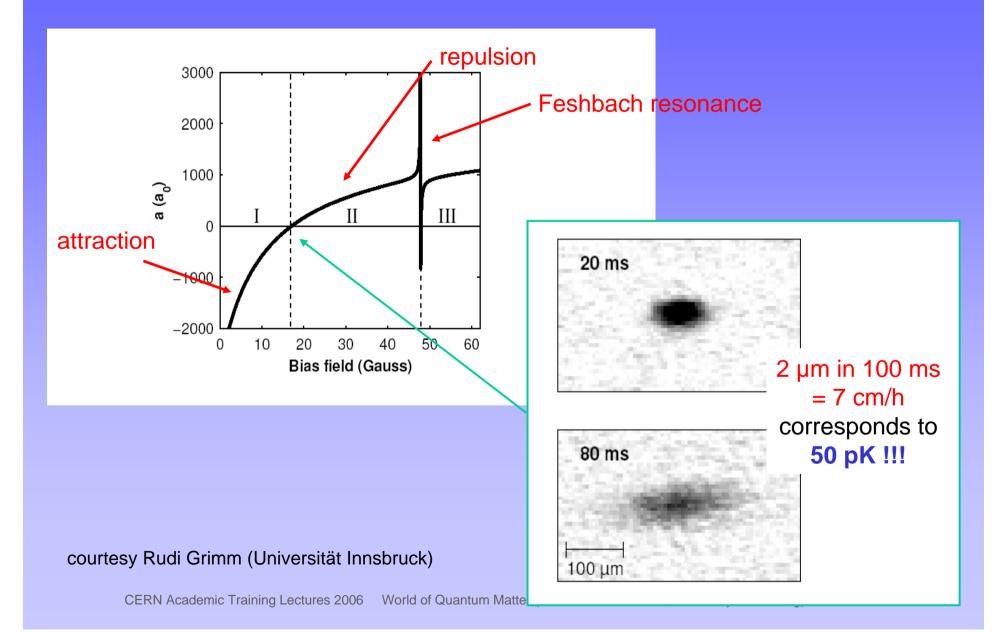


E. Cornell, C. Wieman et al. @ JILA Boulder

CERN Academic Training Lectures 2006 World of Quantum Matter (Matthias Weidemulier, University of Freiburg) Lecture 2

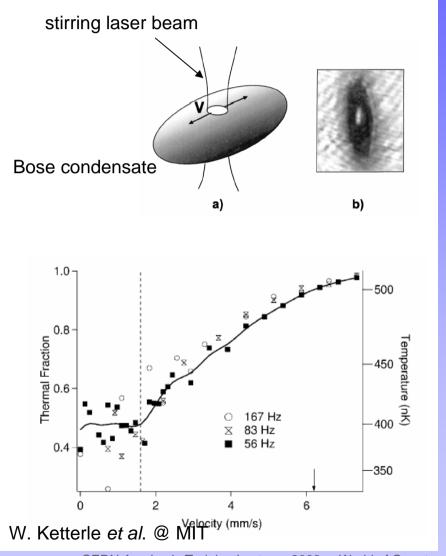
increasing interatomic repulsion

Changing the mean-field interaction



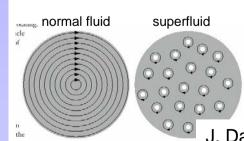
Superfluidity

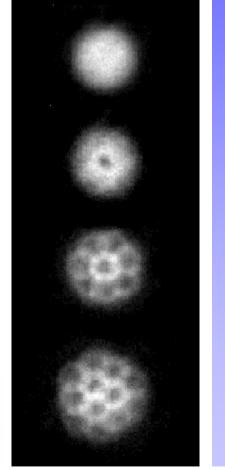
Critical velocity



Quantized flux vortices

quantization of the velocity field due to macroscopic wavefunction $|\mathbf{v}| = n \frac{h}{m}$

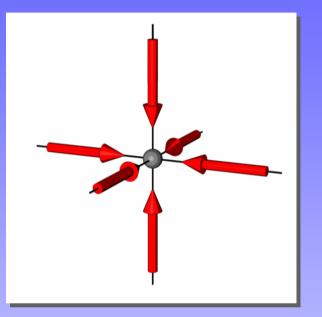


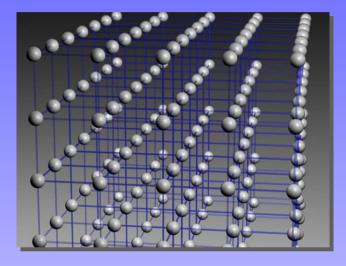


J. Dalibard *et al*. @ ENS, Paris

BEC in 3D Lattice Potential

courtesy Immanuel Bloch (Universität Mainz)





- Resulting potential consists of a simple cubic lattice
- •BEC coherently populates more than 100,000 lattice sites

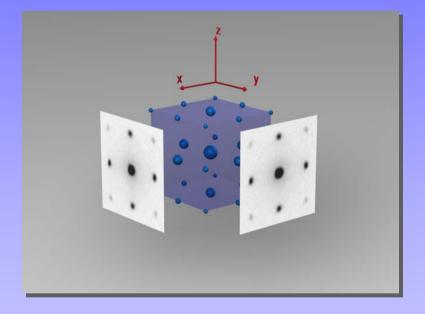
 V_0 up to 22 E_{recoil}

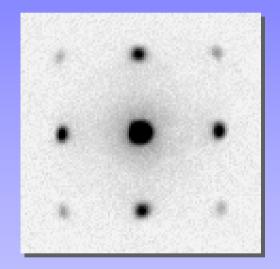
 ω_r up to $2\pi\times 30~\text{kHz}$

 $n \approx 1-5$ atoms on average per site

Interference Pattern of matter waves

courtesy Immanuel Bloch (Universität Mainz)



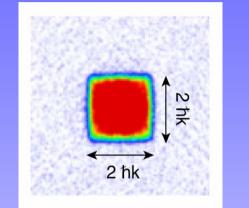


Mapping Brillouin zones

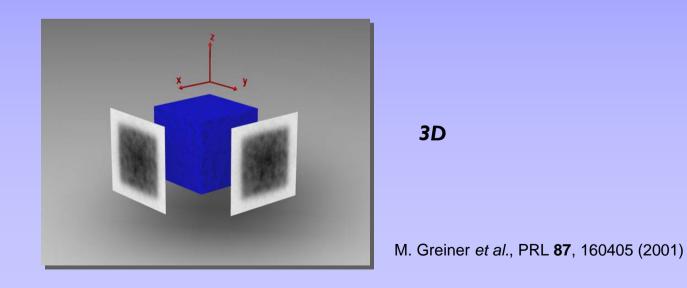
courtesy Immanuel Bloch (Universität Mainz)

Brillouin Zones in 2D

Momentum distribution of a dephased condensate after turning off the lattice potential adiabtically



2D



Basic idea of a Mott insulator

two different quantum phases (*T*=0) separated by a *quantum phase transition*

BEC (superfluid)

Mott insulator

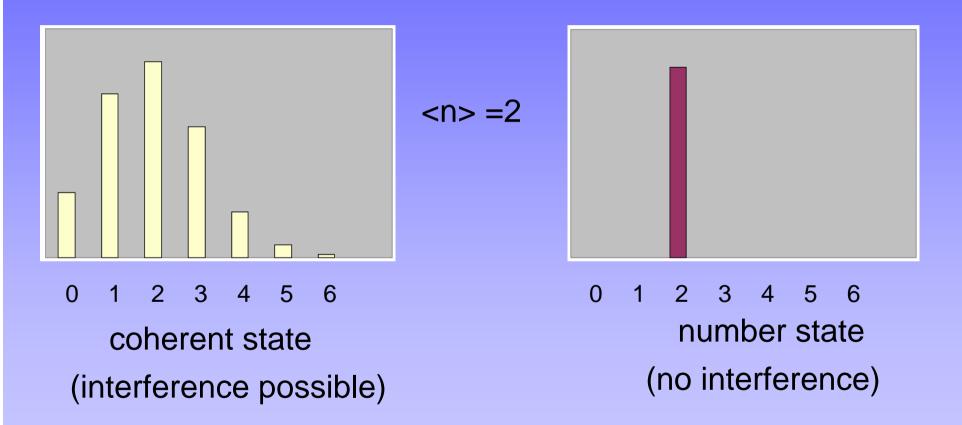
- strong tunnel coupling
- fixed phase relations
- fluctuations of site occupation
 numbers

- weak tunnel coupling
- no phase relations
- no fluctuations of site occupation numbers

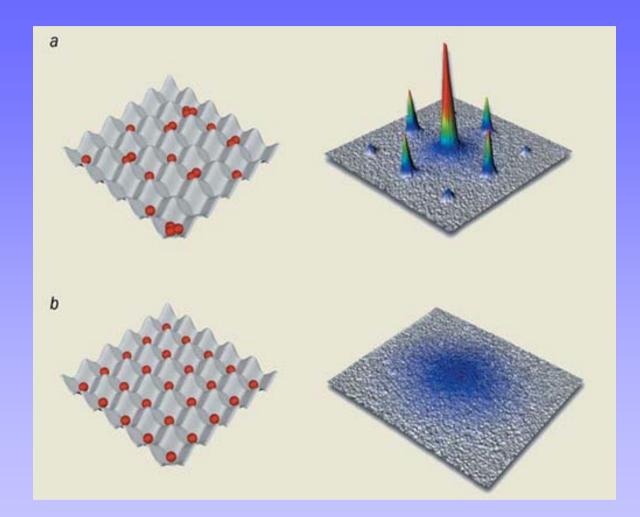
Number fluctuation per lattice site

superfluid

Mott insulator

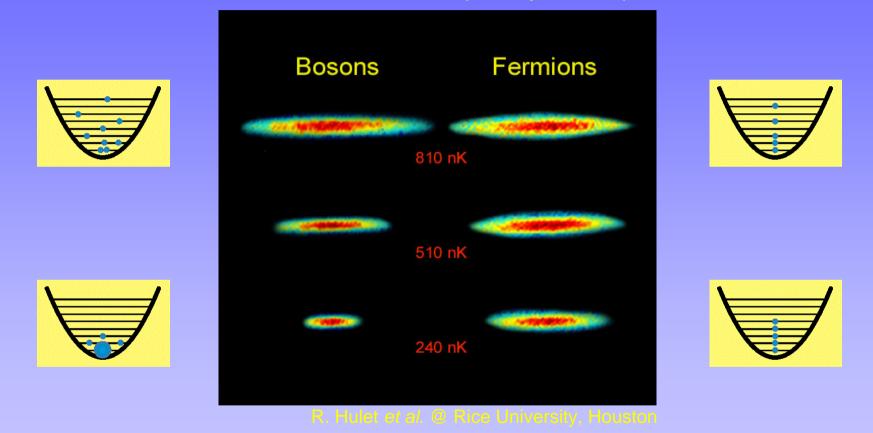


Observation of the Mott insulator



M. Greiner et al., Nature **415**, 39 (2002) I. Bloch, Physics World, April 2004

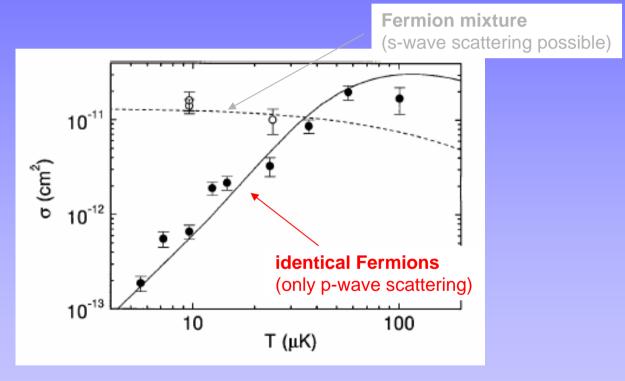
Atomic white dwarf (Pauli pressure)



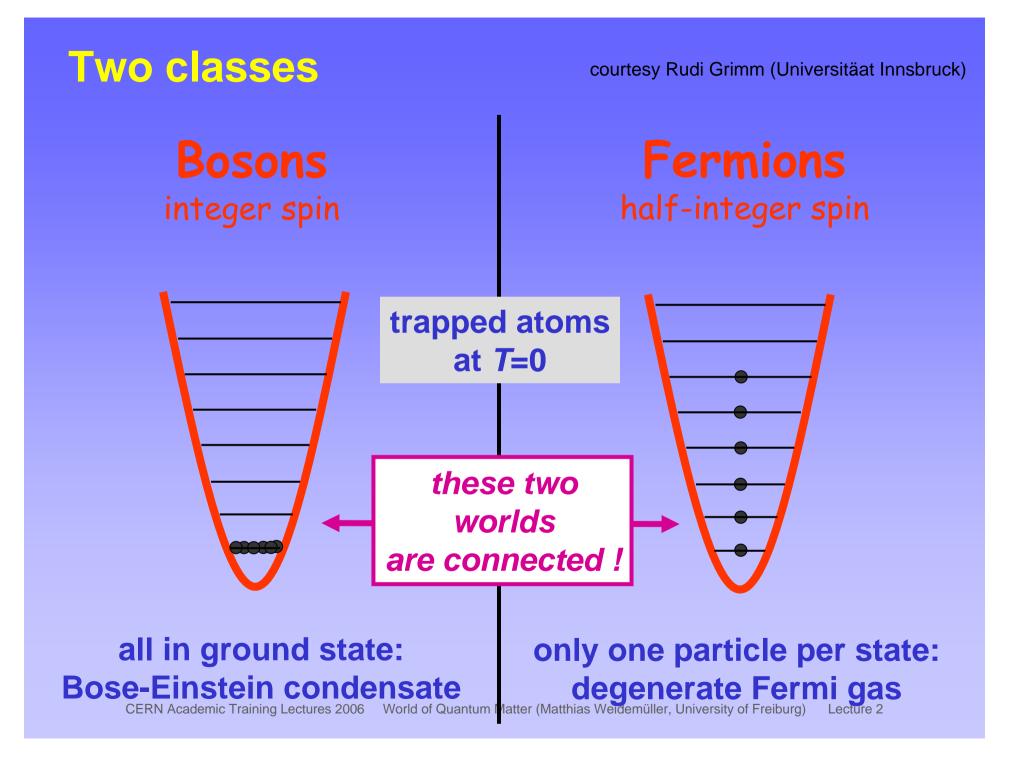
Fermions

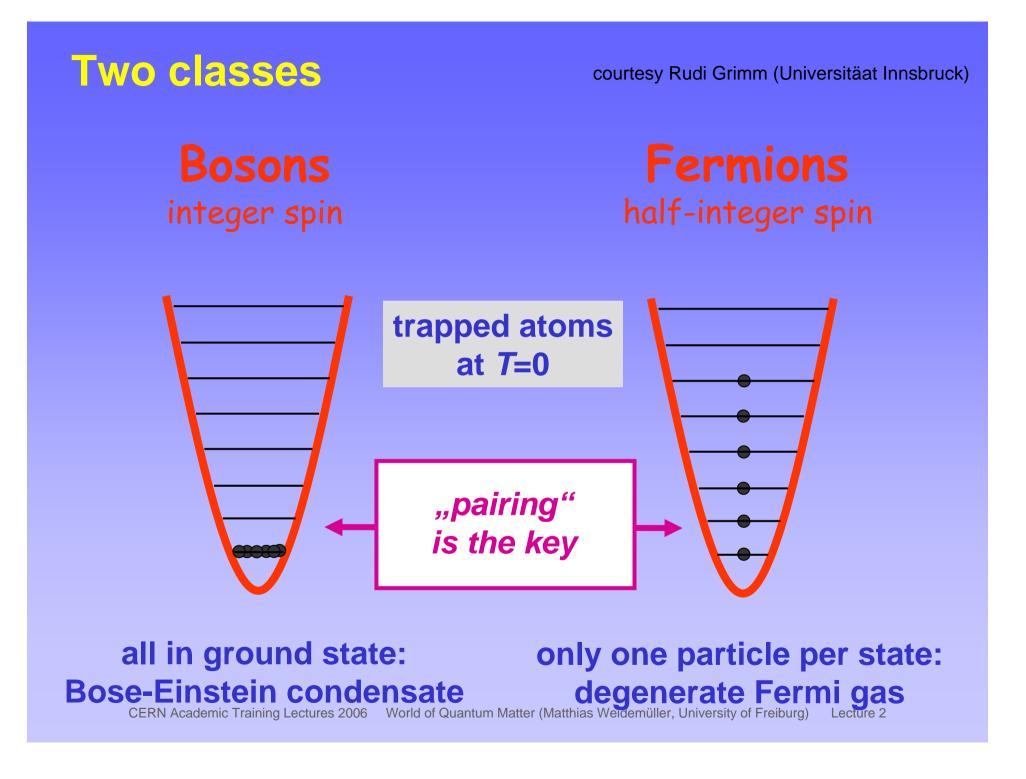
Suppression of elastic collisions

identical Fermions: s-wave scattering length A = 0



B. deMarco et al., PRL 82, 4208 (1999)





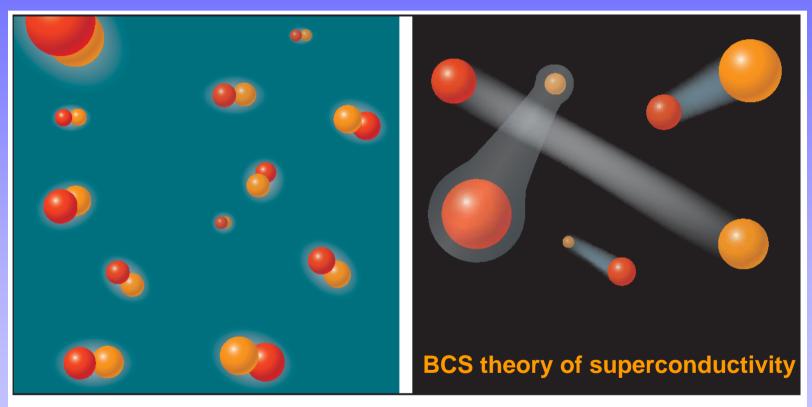
BEC-BCS crossover

courtesy Rudi Grimm (Universitäat Innsbruck)

crossover

molecules

Cooper pairs



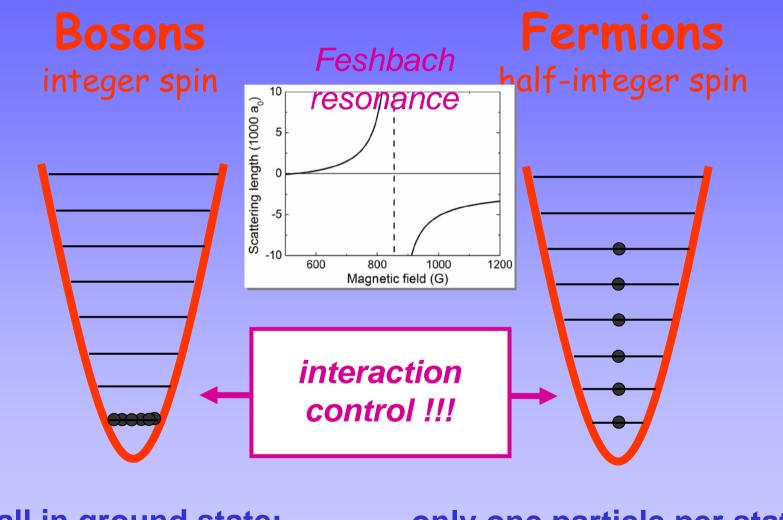
Tango or twist? In a magnetic field, atoms in different spin states can form molecules (*left*). Vary the field, and they might also form loose-knit Cooper pairs.

A. Cho, Science 301, 750 (2003)

CERN Academic Training Lectures 2006 World of Quantum Matter (Matthias Weidemüller, University of Freiburg) Lecture 2

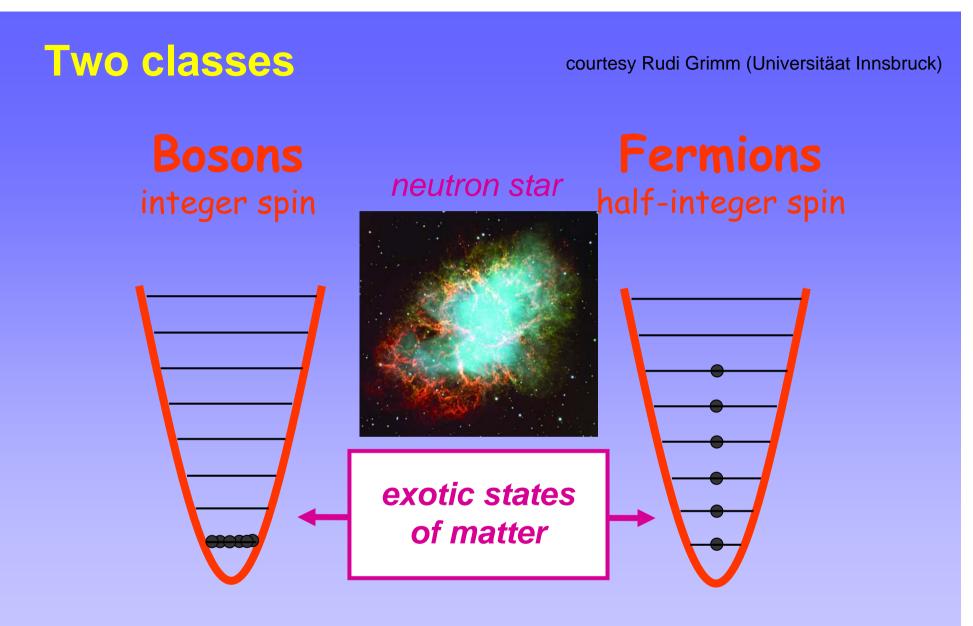
Two classes

courtesy Rudi Grimm (Universitäat Innsbruck)



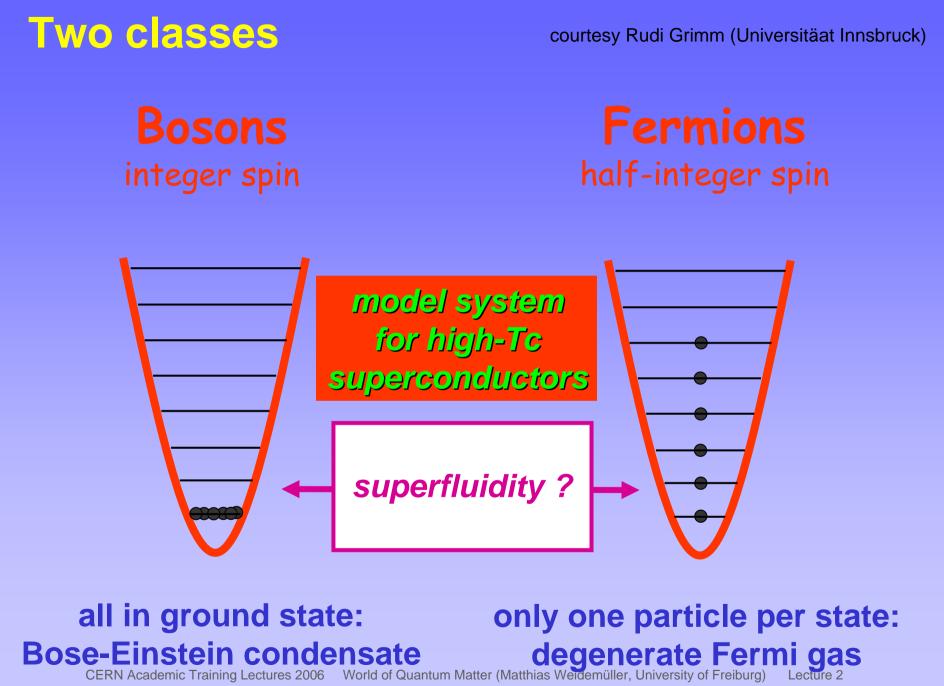
all in ground state: **Bose-Einstein condensate**

only one particle per state: e-Einstein condensate degenerate Fermi gas CERN Academic Training Lectures 2006 World of Quantum Matter (Matthias Weidemüller, University of Freiburg) Lecture 2

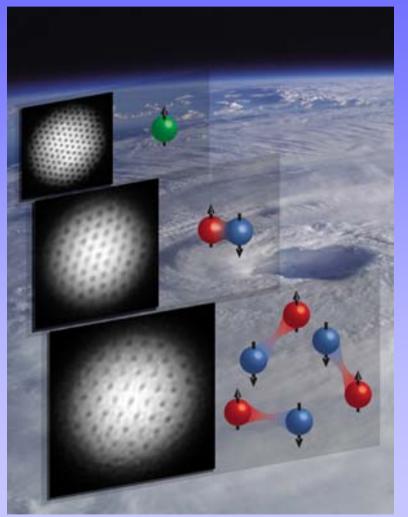


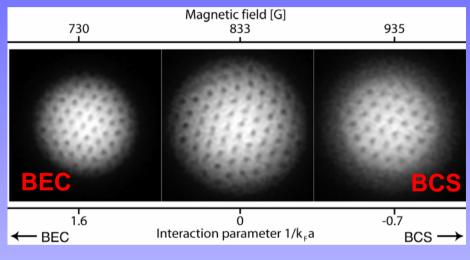
all in ground state:

only one particle per state: Bose-Einstein condensate degenerate Fermi gas CERN Academic Training Lectures 2006 World of Quantum Matter (Matthias Weidemüller, University of Freiburg) Lecture 2



Superfluidity in a paired Fermi gas Vortices in the BEC and BCS phase





M.W. Zwierlein et al., Nature 435, 1047 (2005)

Summary of Lecture 2

Quantum statistics of Bosons and Fermions

- quantum statistics of composite particles
- Bose-Einstein condensation and Fermi degeneracy

Bose-Einstein condensation

- giant matter-wave interference
- role of elastic collisions (mean-field interaction, superfluidity)
- Bose condensates in optical lattices (diffraction, Mott insulator)

> Degenerate Fermi gases

- suppression of s-wave scattering
- Pauli pressure
- BEC-BCS crossover