The World of Quantum Matter

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Atomic and Molecular Quantum Dynamics

Matthias Weidemüller Albert-Ludwigs-Universität Freiburg

Atomare und Molekulare Quantendynamik

Contents of the lectures

- 0. Primer on light-matter interactions
- The way to absolute zero cooling and trapping methods for atoms
- 2. Cold collisions
- 3. Bose-Einstein condensation
- 4. Degenerate Fermi gases
- 5. Cold Rydberg gases and plasmas
- 6. Ultracold molecules
- 7. Manipulation of single atoms
- 8. Cold atoms as targets for photon and particle beams

Lecture 1

Lecture 2

Lecture 3

_ecture 4

Rydberg atoms

Hydrogen energy levels

Alkali Ryberg atoms

Interactions between Rydberg atoms

Highly excited electronic states :

- Small binding energy $\propto n^{-2}$
- Long radiative lifetimes $\propto n^3$
- Orbital radius $\propto n^2$

Strong dipole-dipole interactions:

- Large polarizability $\propto n^7$
- Strong van-der-Waals coefficient ∝ n¹¹

- (1 ms @ n=100)
- (0.5 µm @ n=100)

Laser-cooled atomic gases:

- Average distance ~ 5 µm (~ Rydberg extension)
- Thermal velocities ~ 0.1 μ m / μ s ("frozen" during excitation)
- Thermal energies << interaction energies

Freiburg Rydberg experiment

Science chamber

Creation of a cold gas

Excitation into a cold Rydberg gas

Rydberg excitation

Detection of Rydberg atoms

Field ionization

Plasmas

At t=0: Just after ionization, the plasma is neutral everywhere and the potential is flat.. courtesy Tom Killian (Rice University, Houston)

At $t_1 \sim 10$ ns: Electrons escape due to their kinetic energy and a charge imbalance builds up until electrons are trapped.

courtesy Tom Killian (Rice University, Houston)

At $t_1 \sim 10$ ns: Electrons escape due to their kinetic energy and a charge imbalance builds up until electrons are trapped.

courtesy Tom Killian (Rice University, Houston)

At $t_1 \sim 10$ ns: Electrons escape due to their kinetic energy and a charge imbalance builds up until electrons are trapped.

courtesy Tom Killian (Rice University, Houston)

At $t_1 \sim 10$ ns: Electrons escape due to their kinetic energy and a charge imbalance builds up until electrons are trapped.

courtesy Tom Killian (Rice University, Houston)

At $t_1 \sim 10$ ns: Electrons escape due to their kinetic energy and a charge imbalance builds up until electrons are trapped.

courtesy Tom Killian (Rice University, Houston)

At $t_2 \sim .1 - 10 \mu s$: Ultracold plasma Neutral in center

courtesy Tom Killian (Rice University, Houston)

At $t_2 > 10 \mu s$: Ions cloud expands. Coulomb well depth increases.

courtesy Tom Killian (Rice University, Houston)

At $t_2 > 10 \mu s$: Ions cloud expands. Coulomb well depth decreases.

courtesy Tom Killian (Rice University, Houston)

At $t_2 > 10 \mu s$: Electrons can escape

courtesy Tom Killian (Rice University, Houston)

At $t_2 > 10 \mu s$: Electrons can escape, or be dragged out by residual electric fields.

courtesy Tom Killian (Rice University, Houston)

Dipole-dipole interaction of two atoms

Van-der-Waals interaction

Singer, Stanojevic, Weidemüller and Côté, J.Phys. B 38 S295 (2005)

Controlled interaction between ensembles

Density variation of excitation

82 S low laser intensity (6 W/cm²)

Density variation of excitation

Local blockade of excitation

Photosynthesis

Förster resonance in Rydberg gases

Resonant excitation exchange (Förster Process) $p + p \rightarrow s + s'$

Temporal dynamics of the Förster

resonance

Matthias Weidemüller, University of Freiburg) Lecture 3

Model for many-body Förster transfer

Comparison with experiment

Contents of the lectures

- 0. Primer on light-matter interactions
- The way to absolute zero cooling and trapping methods for atoms
- 2. Cold collisions
- 3. Bose-Einstein condensation
- 4. Degenerate Fermi gases
- 5. Cold Rydberg gases and plasmas
- 6. Ultracold molecules
- 7. Manipulation of single atoms
- 8. Cold atoms as targets for photon and particle beams

Lecture 1

Lecture 2

Lecture 3

_ecture 4

Cold chemistry?

Exchange reaction $B + A_2 \rightarrow AB + A$

Temperature hierarchy:

T < 1 K	quantum state regime vibrational and rotational degrees of freedom freeze out controlled quantum chemistry in well-defined internal states
T < 1 mK	quantum scattering regime (mainly s-waves) details of the interaction potential do not matter, interference of partial waves manipulation by external fields? resonances?
T < 1 μK	quantum degeneracy regime
CERN Academic Tra	role of the mean field? appropriate picture of the reaction? ining Lectures 2006 World of Quantum Matter (Matthias Weidemüller, University of Freiburg) Lecture 3 wave-function driven chemistry?

Preparation of cold and ultracold molecular

Ar beam

"T" < 100 mK

gases

Stark deceleration and trapping

Buffer-gas cooling and magnetic trapping

Photoassociation

J. Doyle et al. (Harvard).

Trapped ions and sympathetic cooling

Molecular quantum gases

World of Quantum Matter (Matthias Weidemüller, University of Freiburg) Lecture 3

ionization

laser beam

repeller (+ 750)

Photoassociation of ultracold molecules

detection

(REMPI)

 $Cs_2^+(X^2\Sigma_z)$

λ,

20

 $R(a_{o})$

٨.,

Σ

10

зП

27000

25000

15000

13000

11000

500

0 -500 (b)

 $6^{2}S_{1/2} + 5^{2}D_{J}$

 $6^{2}S_{1/2} + 6^{2}S_{1/2}$

30

A. Fioretti et al. PRL 80, 4402 (1998)

Photoassociation of ultracold molecules

photoassociation spectrum

R-transfer

decay mainly into unbound (continuum) states

R-transfer

decay mainly into unbound (continuum) states

decay into bound states via double-well potential

decay into bound states via coupled potential wells

R-transfer

Shaped femtosecond laser pulses

(in collaboration with Wöste group @ FU Berlin)

Ultracold molecules via Feshbach

resonances

 $\begin{array}{l} \textbf{Cs}_2 \ (\text{Grimm}) \\ \textbf{Rb}_2 \ (\text{Wieman, Rempe}) \\ \textbf{K}_2 \ (\text{Jin}) \\ \textbf{Na}_2 \ (\text{Ketterle}) \\ \textbf{Li}_2 \ (\text{Grimm, Salomon, Hulet et al.}) \end{array}$

Tons of theory papers

only highest vibrational state is populated → very "sloppy" molecules

Cs₂ molecules out of a Cs BEC (Grimm group)

molecules reconverted into atoms

J. Herbig et al., Science 301, 1510 (2003)

Magnetic trapping of cold molecules

"Feshbach" molecules in a Joffe-Pritchard trap

Rempe group S. Dürr *et al.*, Phys. Rev. Lett. **92**, 020406 (2004)

Optical trapping of cold molecules

Ground state molecules in optical dipole trap

photoassociation laser

Storage of ultracold molecules

Evidence for ultracold atom-molecule collision

7

$$Cs + Cs_2(v,J) \rightarrow Cs + Cs_2(v',J') + E_{kin}$$

Storage times w/ and w/o atoms

Collisions of trapped Cs₂

Cs₂ decay in collisions with ultracold Cs

Density dependence of the loss rate

Storage times vs. atom density for different target states

$$\Gamma_{\rm mol} = \beta_{\rm at-mol} \, n_{\rm at}$$

$$\begin{array}{l} 3 (v=33-48) = 1.51(4) \times 10^{-10} \, \mathrm{cm^{3/s}} \\ 3 (v=4-6) = 1.52(7) \times 10^{-10} \, \mathrm{cm^{3/s}} \end{array}$$

P. Staanum et al., Phys. Rev. Lett., in press

	J=0	J=1	J=2	J=3	J=4
β (10 ⁻¹⁰ cm ³ /s)	1.8(6)	2.5(3)	2.1(4)	2.4(7)	2.2(4)

 No dependence on rotational quantum number!

 CERN Academic Training Lectures 2006
 World of Quantum Matter (Matthias Weidemüller, University of Freiburg)
 Lecture 3

Scattering cross section

Threshold limit for inelastic s-wave collisions:

$$\beta_{s=0} = \langle \sigma_{s=0} v \rangle = \sqrt{2\pi\hbar^4 / (m_{\rm red}^3 k_b T)}$$

For Cs-Cs₂ collision @ 50 μ K: $\beta_{s=0} \sim 2 \times 10^{-11} \text{ cm}^3/\text{s}$ (Exp: 10⁻¹⁰ cm³/s)

Experimental value is larger: p- and d-wave contributions contribute as well

Measured rate coefficients are close to values predicted for Na-Na₂ and K-K₂ collisions G. Quemener *et al.*, Eur. Phys. J. D **30**, 201 (2004); Phys. Rev. A **71**, 032722 (2005)

> Next step: More complex processes involving different species, e.g., $Cs_2 + Li \leftrightarrow Cs + LiCs$

Summary of Lecture 4

Cold Rydberg gases

- extremely polarizable medium
- ultracold, strongly-coupled plasmas
- long-range interactions via electric dipole forces \Rightarrow dipole blockade
- energy transfer and Förster resonances

Cold molecules

- formation of cold molecules (Photoassociation, Feshbach)
- detection of cold molecules (REMPI, coherent dissociation)
- trapping of cold molecules (magnetic and optical traps)
- ultracold atom-molecule interactions